direct product, metabelian, nilpotent (class 3), monomial, 3-elementary
Aliases: C2×C33.C32, C6.2C3≀C3, C32⋊C9⋊10C6, (C6×He3).1C3, C33.2(C3×C6), (C3×C6).15He3, (C3×He3).14C6, C6.1(He3.C3), C32.30(C2×He3), (C32×C6).2C32, (C3×3- 1+2)⋊8C6, (C6×3- 1+2)⋊1C3, C3.5(C2×C3≀C3), (C2×C32⋊C9)⋊2C3, C3.4(C2×He3.C3), SmallGroup(486,64)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C33.C32
G = < a,b,c,d,e,f | a2=b3=c3=d3=e3=1, f3=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ede-1=cd=dc, ce=ec, cf=fc, fdf-1=bde-1, fef-1=b-1e >
Subgroups: 324 in 92 conjugacy classes, 24 normal (16 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C32, C32, C18, C3×C6, C3×C6, C3×C9, He3, 3- 1+2, C33, C33, C3×C18, C2×He3, C2×3- 1+2, C32×C6, C32×C6, C32⋊C9, C3×He3, C3×3- 1+2, C2×C32⋊C9, C6×He3, C6×3- 1+2, C33.C32, C2×C33.C32
Quotients: C1, C2, C3, C6, C32, C3×C6, He3, C2×He3, C3≀C3, He3.C3, C2×C3≀C3, C2×He3.C3, C33.C32, C2×C33.C32
(1 94)(2 95)(3 96)(4 97)(5 98)(6 99)(7 91)(8 92)(9 93)(10 137)(11 138)(12 139)(13 140)(14 141)(15 142)(16 143)(17 144)(18 136)(19 100)(20 101)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 82)(36 83)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 111)(56 112)(57 113)(58 114)(59 115)(60 116)(61 117)(62 109)(63 110)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)(145 148 151)(146 149 152)(147 150 153)(154 157 160)(155 158 161)(156 159 162)
(1 80 23)(2 81 24)(3 73 25)(4 74 26)(5 75 27)(6 76 19)(7 77 20)(8 78 21)(9 79 22)(10 112 66)(11 113 67)(12 114 68)(13 115 69)(14 116 70)(15 117 71)(16 109 72)(17 110 64)(18 111 65)(28 132 122)(29 133 123)(30 134 124)(31 135 125)(32 127 126)(33 128 118)(34 129 119)(35 130 120)(36 131 121)(37 89 47)(38 90 48)(39 82 49)(40 83 50)(41 84 51)(42 85 52)(43 86 53)(44 87 54)(45 88 46)(55 146 136)(56 147 137)(57 148 138)(58 149 139)(59 150 140)(60 151 141)(61 152 142)(62 153 143)(63 145 144)(91 158 101)(92 159 102)(93 160 103)(94 161 104)(95 162 105)(96 154 106)(97 155 107)(98 156 108)(99 157 100)
(1 14 43)(2 111 41)(3 72 45)(4 17 37)(5 114 44)(6 66 39)(7 11 40)(8 117 38)(9 69 42)(10 82 76)(12 54 27)(13 85 79)(15 48 21)(16 88 73)(18 51 24)(19 112 49)(20 67 50)(22 115 52)(23 70 53)(25 109 46)(26 64 47)(28 162 146)(29 160 140)(30 161 60)(31 156 149)(32 154 143)(33 155 63)(34 159 152)(35 157 137)(36 158 57)(55 122 95)(56 130 100)(58 125 98)(59 133 103)(61 119 92)(62 127 106)(65 84 81)(68 87 75)(71 90 78)(74 110 89)(77 113 83)(80 116 86)(91 138 121)(93 150 123)(94 141 124)(96 153 126)(97 144 118)(99 147 120)(101 148 131)(102 142 129)(104 151 134)(105 136 132)(107 145 128)(108 139 135)
(2 8 5)(3 6 9)(10 69 109)(11 67 113)(12 65 117)(13 72 112)(14 70 116)(15 68 111)(16 66 115)(17 64 110)(18 71 114)(19 22 25)(21 27 24)(28 129 125)(29 127 120)(30 134 124)(31 132 119)(32 130 123)(33 128 118)(34 135 122)(35 133 126)(36 131 121)(37 89 47)(38 87 51)(39 85 46)(40 83 50)(41 90 54)(42 88 49)(43 86 53)(44 84 48)(45 82 52)(55 142 149)(56 140 153)(57 138 148)(58 136 152)(59 143 147)(60 141 151)(61 139 146)(62 137 150)(63 144 145)(73 76 79)(75 81 78)(92 98 95)(93 96 99)(100 103 106)(102 108 105)(154 157 160)(156 162 159)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
G:=sub<Sym(162)| (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,91)(8,92)(9,93)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,136)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,82)(36,83)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,109)(63,110)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (1,80,23)(2,81,24)(3,73,25)(4,74,26)(5,75,27)(6,76,19)(7,77,20)(8,78,21)(9,79,22)(10,112,66)(11,113,67)(12,114,68)(13,115,69)(14,116,70)(15,117,71)(16,109,72)(17,110,64)(18,111,65)(28,132,122)(29,133,123)(30,134,124)(31,135,125)(32,127,126)(33,128,118)(34,129,119)(35,130,120)(36,131,121)(37,89,47)(38,90,48)(39,82,49)(40,83,50)(41,84,51)(42,85,52)(43,86,53)(44,87,54)(45,88,46)(55,146,136)(56,147,137)(57,148,138)(58,149,139)(59,150,140)(60,151,141)(61,152,142)(62,153,143)(63,145,144)(91,158,101)(92,159,102)(93,160,103)(94,161,104)(95,162,105)(96,154,106)(97,155,107)(98,156,108)(99,157,100), (1,14,43)(2,111,41)(3,72,45)(4,17,37)(5,114,44)(6,66,39)(7,11,40)(8,117,38)(9,69,42)(10,82,76)(12,54,27)(13,85,79)(15,48,21)(16,88,73)(18,51,24)(19,112,49)(20,67,50)(22,115,52)(23,70,53)(25,109,46)(26,64,47)(28,162,146)(29,160,140)(30,161,60)(31,156,149)(32,154,143)(33,155,63)(34,159,152)(35,157,137)(36,158,57)(55,122,95)(56,130,100)(58,125,98)(59,133,103)(61,119,92)(62,127,106)(65,84,81)(68,87,75)(71,90,78)(74,110,89)(77,113,83)(80,116,86)(91,138,121)(93,150,123)(94,141,124)(96,153,126)(97,144,118)(99,147,120)(101,148,131)(102,142,129)(104,151,134)(105,136,132)(107,145,128)(108,139,135), (2,8,5)(3,6,9)(10,69,109)(11,67,113)(12,65,117)(13,72,112)(14,70,116)(15,68,111)(16,66,115)(17,64,110)(18,71,114)(19,22,25)(21,27,24)(28,129,125)(29,127,120)(30,134,124)(31,132,119)(32,130,123)(33,128,118)(34,135,122)(35,133,126)(36,131,121)(37,89,47)(38,87,51)(39,85,46)(40,83,50)(41,90,54)(42,88,49)(43,86,53)(44,84,48)(45,82,52)(55,142,149)(56,140,153)(57,138,148)(58,136,152)(59,143,147)(60,141,151)(61,139,146)(62,137,150)(63,144,145)(73,76,79)(75,81,78)(92,98,95)(93,96,99)(100,103,106)(102,108,105)(154,157,160)(156,162,159), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162)>;
G:=Group( (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,91)(8,92)(9,93)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,136)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,82)(36,83)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,109)(63,110)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (1,80,23)(2,81,24)(3,73,25)(4,74,26)(5,75,27)(6,76,19)(7,77,20)(8,78,21)(9,79,22)(10,112,66)(11,113,67)(12,114,68)(13,115,69)(14,116,70)(15,117,71)(16,109,72)(17,110,64)(18,111,65)(28,132,122)(29,133,123)(30,134,124)(31,135,125)(32,127,126)(33,128,118)(34,129,119)(35,130,120)(36,131,121)(37,89,47)(38,90,48)(39,82,49)(40,83,50)(41,84,51)(42,85,52)(43,86,53)(44,87,54)(45,88,46)(55,146,136)(56,147,137)(57,148,138)(58,149,139)(59,150,140)(60,151,141)(61,152,142)(62,153,143)(63,145,144)(91,158,101)(92,159,102)(93,160,103)(94,161,104)(95,162,105)(96,154,106)(97,155,107)(98,156,108)(99,157,100), (1,14,43)(2,111,41)(3,72,45)(4,17,37)(5,114,44)(6,66,39)(7,11,40)(8,117,38)(9,69,42)(10,82,76)(12,54,27)(13,85,79)(15,48,21)(16,88,73)(18,51,24)(19,112,49)(20,67,50)(22,115,52)(23,70,53)(25,109,46)(26,64,47)(28,162,146)(29,160,140)(30,161,60)(31,156,149)(32,154,143)(33,155,63)(34,159,152)(35,157,137)(36,158,57)(55,122,95)(56,130,100)(58,125,98)(59,133,103)(61,119,92)(62,127,106)(65,84,81)(68,87,75)(71,90,78)(74,110,89)(77,113,83)(80,116,86)(91,138,121)(93,150,123)(94,141,124)(96,153,126)(97,144,118)(99,147,120)(101,148,131)(102,142,129)(104,151,134)(105,136,132)(107,145,128)(108,139,135), (2,8,5)(3,6,9)(10,69,109)(11,67,113)(12,65,117)(13,72,112)(14,70,116)(15,68,111)(16,66,115)(17,64,110)(18,71,114)(19,22,25)(21,27,24)(28,129,125)(29,127,120)(30,134,124)(31,132,119)(32,130,123)(33,128,118)(34,135,122)(35,133,126)(36,131,121)(37,89,47)(38,87,51)(39,85,46)(40,83,50)(41,90,54)(42,88,49)(43,86,53)(44,84,48)(45,82,52)(55,142,149)(56,140,153)(57,138,148)(58,136,152)(59,143,147)(60,141,151)(61,139,146)(62,137,150)(63,144,145)(73,76,79)(75,81,78)(92,98,95)(93,96,99)(100,103,106)(102,108,105)(154,157,160)(156,162,159), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162) );
G=PermutationGroup([[(1,94),(2,95),(3,96),(4,97),(5,98),(6,99),(7,91),(8,92),(9,93),(10,137),(11,138),(12,139),(13,140),(14,141),(15,142),(16,143),(17,144),(18,136),(19,100),(20,101),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,82),(36,83),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,111),(56,112),(57,113),(58,114),(59,115),(60,116),(61,117),(62,109),(63,110),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144),(145,148,151),(146,149,152),(147,150,153),(154,157,160),(155,158,161),(156,159,162)], [(1,80,23),(2,81,24),(3,73,25),(4,74,26),(5,75,27),(6,76,19),(7,77,20),(8,78,21),(9,79,22),(10,112,66),(11,113,67),(12,114,68),(13,115,69),(14,116,70),(15,117,71),(16,109,72),(17,110,64),(18,111,65),(28,132,122),(29,133,123),(30,134,124),(31,135,125),(32,127,126),(33,128,118),(34,129,119),(35,130,120),(36,131,121),(37,89,47),(38,90,48),(39,82,49),(40,83,50),(41,84,51),(42,85,52),(43,86,53),(44,87,54),(45,88,46),(55,146,136),(56,147,137),(57,148,138),(58,149,139),(59,150,140),(60,151,141),(61,152,142),(62,153,143),(63,145,144),(91,158,101),(92,159,102),(93,160,103),(94,161,104),(95,162,105),(96,154,106),(97,155,107),(98,156,108),(99,157,100)], [(1,14,43),(2,111,41),(3,72,45),(4,17,37),(5,114,44),(6,66,39),(7,11,40),(8,117,38),(9,69,42),(10,82,76),(12,54,27),(13,85,79),(15,48,21),(16,88,73),(18,51,24),(19,112,49),(20,67,50),(22,115,52),(23,70,53),(25,109,46),(26,64,47),(28,162,146),(29,160,140),(30,161,60),(31,156,149),(32,154,143),(33,155,63),(34,159,152),(35,157,137),(36,158,57),(55,122,95),(56,130,100),(58,125,98),(59,133,103),(61,119,92),(62,127,106),(65,84,81),(68,87,75),(71,90,78),(74,110,89),(77,113,83),(80,116,86),(91,138,121),(93,150,123),(94,141,124),(96,153,126),(97,144,118),(99,147,120),(101,148,131),(102,142,129),(104,151,134),(105,136,132),(107,145,128),(108,139,135)], [(2,8,5),(3,6,9),(10,69,109),(11,67,113),(12,65,117),(13,72,112),(14,70,116),(15,68,111),(16,66,115),(17,64,110),(18,71,114),(19,22,25),(21,27,24),(28,129,125),(29,127,120),(30,134,124),(31,132,119),(32,130,123),(33,128,118),(34,135,122),(35,133,126),(36,131,121),(37,89,47),(38,87,51),(39,85,46),(40,83,50),(41,90,54),(42,88,49),(43,86,53),(44,84,48),(45,82,52),(55,142,149),(56,140,153),(57,138,148),(58,136,152),(59,143,147),(60,141,151),(61,139,146),(62,137,150),(63,144,145),(73,76,79),(75,81,78),(92,98,95),(93,96,99),(100,103,106),(102,108,105),(154,157,160),(156,162,159)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)]])
70 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | ··· | 3P | 6A | ··· | 6H | 6I | ··· | 6P | 9A | ··· | 9R | 18A | ··· | 18R |
order | 1 | 2 | 3 | ··· | 3 | 3 | ··· | 3 | 6 | ··· | 6 | 6 | ··· | 6 | 9 | ··· | 9 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 9 | ··· | 9 | 1 | ··· | 1 | 9 | ··· | 9 | 9 | ··· | 9 | 9 | ··· | 9 |
70 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 |
type | + | + | ||||||||||||
image | C1 | C2 | C3 | C3 | C3 | C6 | C6 | C6 | He3 | C2×He3 | C3≀C3 | He3.C3 | C2×C3≀C3 | C2×He3.C3 |
kernel | C2×C33.C32 | C33.C32 | C2×C32⋊C9 | C6×He3 | C6×3- 1+2 | C32⋊C9 | C3×He3 | C3×3- 1+2 | C3×C6 | C32 | C6 | C6 | C3 | C3 |
# reps | 1 | 1 | 2 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 18 | 6 | 18 | 6 |
Matrix representation of C2×C33.C32 ►in GL6(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 | 0 |
0 | 0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
7 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 7 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
0 | 0 | 1 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 0 |
0 | 0 | 0 | 0 | 0 | 17 |
0 | 0 | 0 | 16 | 0 | 0 |
G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,11],[0,1,0,0,0,0,0,0,11,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,17,0,0,0,0,0,0,17,0] >;
C2×C33.C32 in GAP, Magma, Sage, TeX
C_2\times C_3^3.C_3^2
% in TeX
G:=Group("C2xC3^3.C3^2");
// GroupNames label
G:=SmallGroup(486,64);
// by ID
G=gap.SmallGroup(486,64);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,224,873,735]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^3=1,f^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*d*e^-1=c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=b*d*e^-1,f*e*f^-1=b^-1*e>;
// generators/relations