Copied to
clipboard

G = C2×C33.C32order 486 = 2·35

Direct product of C2 and C33.C32

direct product, metabelian, nilpotent (class 3), monomial, 3-elementary

Aliases: C2×C33.C32, C6.2C3≀C3, C32⋊C910C6, (C6×He3).1C3, C33.2(C3×C6), (C3×C6).15He3, (C3×He3).14C6, C6.1(He3.C3), C32.30(C2×He3), (C32×C6).2C32, (C3×3- 1+2)⋊8C6, (C6×3- 1+2)⋊1C3, C3.5(C2×C3≀C3), (C2×C32⋊C9)⋊2C3, C3.4(C2×He3.C3), SmallGroup(486,64)

Series: Derived Chief Lower central Upper central

C1C33 — C2×C33.C32
C1C3C32C33C3×He3C33.C32 — C2×C33.C32
C1C32C33 — C2×C33.C32
C1C3×C6C32×C6 — C2×C33.C32

Generators and relations for C2×C33.C32
 G = < a,b,c,d,e,f | a2=b3=c3=d3=e3=1, f3=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, ede-1=cd=dc, ce=ec, cf=fc, fdf-1=bde-1, fef-1=b-1e >

Subgroups: 324 in 92 conjugacy classes, 24 normal (16 characteristic)
C1, C2, C3, C3, C3, C6, C6, C6, C9, C32, C32, C18, C3×C6, C3×C6, C3×C9, He3, 3- 1+2, C33, C33, C3×C18, C2×He3, C2×3- 1+2, C32×C6, C32×C6, C32⋊C9, C3×He3, C3×3- 1+2, C2×C32⋊C9, C6×He3, C6×3- 1+2, C33.C32, C2×C33.C32
Quotients: C1, C2, C3, C6, C32, C3×C6, He3, C2×He3, C3≀C3, He3.C3, C2×C3≀C3, C2×He3.C3, C33.C32, C2×C33.C32

Smallest permutation representation of C2×C33.C32
On 162 points
Generators in S162
(1 94)(2 95)(3 96)(4 97)(5 98)(6 99)(7 91)(8 92)(9 93)(10 137)(11 138)(12 139)(13 140)(14 141)(15 142)(16 143)(17 144)(18 136)(19 100)(20 101)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 82)(36 83)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 111)(56 112)(57 113)(58 114)(59 115)(60 116)(61 117)(62 109)(63 110)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 4 7)(2 5 8)(3 6 9)(10 13 16)(11 14 17)(12 15 18)(19 22 25)(20 23 26)(21 24 27)(28 31 34)(29 32 35)(30 33 36)(37 40 43)(38 41 44)(39 42 45)(46 49 52)(47 50 53)(48 51 54)(55 58 61)(56 59 62)(57 60 63)(64 67 70)(65 68 71)(66 69 72)(73 76 79)(74 77 80)(75 78 81)(82 85 88)(83 86 89)(84 87 90)(91 94 97)(92 95 98)(93 96 99)(100 103 106)(101 104 107)(102 105 108)(109 112 115)(110 113 116)(111 114 117)(118 121 124)(119 122 125)(120 123 126)(127 130 133)(128 131 134)(129 132 135)(136 139 142)(137 140 143)(138 141 144)(145 148 151)(146 149 152)(147 150 153)(154 157 160)(155 158 161)(156 159 162)
(1 80 23)(2 81 24)(3 73 25)(4 74 26)(5 75 27)(6 76 19)(7 77 20)(8 78 21)(9 79 22)(10 112 66)(11 113 67)(12 114 68)(13 115 69)(14 116 70)(15 117 71)(16 109 72)(17 110 64)(18 111 65)(28 132 122)(29 133 123)(30 134 124)(31 135 125)(32 127 126)(33 128 118)(34 129 119)(35 130 120)(36 131 121)(37 89 47)(38 90 48)(39 82 49)(40 83 50)(41 84 51)(42 85 52)(43 86 53)(44 87 54)(45 88 46)(55 146 136)(56 147 137)(57 148 138)(58 149 139)(59 150 140)(60 151 141)(61 152 142)(62 153 143)(63 145 144)(91 158 101)(92 159 102)(93 160 103)(94 161 104)(95 162 105)(96 154 106)(97 155 107)(98 156 108)(99 157 100)
(1 14 43)(2 111 41)(3 72 45)(4 17 37)(5 114 44)(6 66 39)(7 11 40)(8 117 38)(9 69 42)(10 82 76)(12 54 27)(13 85 79)(15 48 21)(16 88 73)(18 51 24)(19 112 49)(20 67 50)(22 115 52)(23 70 53)(25 109 46)(26 64 47)(28 162 146)(29 160 140)(30 161 60)(31 156 149)(32 154 143)(33 155 63)(34 159 152)(35 157 137)(36 158 57)(55 122 95)(56 130 100)(58 125 98)(59 133 103)(61 119 92)(62 127 106)(65 84 81)(68 87 75)(71 90 78)(74 110 89)(77 113 83)(80 116 86)(91 138 121)(93 150 123)(94 141 124)(96 153 126)(97 144 118)(99 147 120)(101 148 131)(102 142 129)(104 151 134)(105 136 132)(107 145 128)(108 139 135)
(2 8 5)(3 6 9)(10 69 109)(11 67 113)(12 65 117)(13 72 112)(14 70 116)(15 68 111)(16 66 115)(17 64 110)(18 71 114)(19 22 25)(21 27 24)(28 129 125)(29 127 120)(30 134 124)(31 132 119)(32 130 123)(33 128 118)(34 135 122)(35 133 126)(36 131 121)(37 89 47)(38 87 51)(39 85 46)(40 83 50)(41 90 54)(42 88 49)(43 86 53)(44 84 48)(45 82 52)(55 142 149)(56 140 153)(57 138 148)(58 136 152)(59 143 147)(60 141 151)(61 139 146)(62 137 150)(63 144 145)(73 76 79)(75 81 78)(92 98 95)(93 96 99)(100 103 106)(102 108 105)(154 157 160)(156 162 159)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)

G:=sub<Sym(162)| (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,91)(8,92)(9,93)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,136)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,82)(36,83)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,109)(63,110)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (1,80,23)(2,81,24)(3,73,25)(4,74,26)(5,75,27)(6,76,19)(7,77,20)(8,78,21)(9,79,22)(10,112,66)(11,113,67)(12,114,68)(13,115,69)(14,116,70)(15,117,71)(16,109,72)(17,110,64)(18,111,65)(28,132,122)(29,133,123)(30,134,124)(31,135,125)(32,127,126)(33,128,118)(34,129,119)(35,130,120)(36,131,121)(37,89,47)(38,90,48)(39,82,49)(40,83,50)(41,84,51)(42,85,52)(43,86,53)(44,87,54)(45,88,46)(55,146,136)(56,147,137)(57,148,138)(58,149,139)(59,150,140)(60,151,141)(61,152,142)(62,153,143)(63,145,144)(91,158,101)(92,159,102)(93,160,103)(94,161,104)(95,162,105)(96,154,106)(97,155,107)(98,156,108)(99,157,100), (1,14,43)(2,111,41)(3,72,45)(4,17,37)(5,114,44)(6,66,39)(7,11,40)(8,117,38)(9,69,42)(10,82,76)(12,54,27)(13,85,79)(15,48,21)(16,88,73)(18,51,24)(19,112,49)(20,67,50)(22,115,52)(23,70,53)(25,109,46)(26,64,47)(28,162,146)(29,160,140)(30,161,60)(31,156,149)(32,154,143)(33,155,63)(34,159,152)(35,157,137)(36,158,57)(55,122,95)(56,130,100)(58,125,98)(59,133,103)(61,119,92)(62,127,106)(65,84,81)(68,87,75)(71,90,78)(74,110,89)(77,113,83)(80,116,86)(91,138,121)(93,150,123)(94,141,124)(96,153,126)(97,144,118)(99,147,120)(101,148,131)(102,142,129)(104,151,134)(105,136,132)(107,145,128)(108,139,135), (2,8,5)(3,6,9)(10,69,109)(11,67,113)(12,65,117)(13,72,112)(14,70,116)(15,68,111)(16,66,115)(17,64,110)(18,71,114)(19,22,25)(21,27,24)(28,129,125)(29,127,120)(30,134,124)(31,132,119)(32,130,123)(33,128,118)(34,135,122)(35,133,126)(36,131,121)(37,89,47)(38,87,51)(39,85,46)(40,83,50)(41,90,54)(42,88,49)(43,86,53)(44,84,48)(45,82,52)(55,142,149)(56,140,153)(57,138,148)(58,136,152)(59,143,147)(60,141,151)(61,139,146)(62,137,150)(63,144,145)(73,76,79)(75,81,78)(92,98,95)(93,96,99)(100,103,106)(102,108,105)(154,157,160)(156,162,159), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162)>;

G:=Group( (1,94)(2,95)(3,96)(4,97)(5,98)(6,99)(7,91)(8,92)(9,93)(10,137)(11,138)(12,139)(13,140)(14,141)(15,142)(16,143)(17,144)(18,136)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,82)(36,83)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,109)(63,110)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,4,7)(2,5,8)(3,6,9)(10,13,16)(11,14,17)(12,15,18)(19,22,25)(20,23,26)(21,24,27)(28,31,34)(29,32,35)(30,33,36)(37,40,43)(38,41,44)(39,42,45)(46,49,52)(47,50,53)(48,51,54)(55,58,61)(56,59,62)(57,60,63)(64,67,70)(65,68,71)(66,69,72)(73,76,79)(74,77,80)(75,78,81)(82,85,88)(83,86,89)(84,87,90)(91,94,97)(92,95,98)(93,96,99)(100,103,106)(101,104,107)(102,105,108)(109,112,115)(110,113,116)(111,114,117)(118,121,124)(119,122,125)(120,123,126)(127,130,133)(128,131,134)(129,132,135)(136,139,142)(137,140,143)(138,141,144)(145,148,151)(146,149,152)(147,150,153)(154,157,160)(155,158,161)(156,159,162), (1,80,23)(2,81,24)(3,73,25)(4,74,26)(5,75,27)(6,76,19)(7,77,20)(8,78,21)(9,79,22)(10,112,66)(11,113,67)(12,114,68)(13,115,69)(14,116,70)(15,117,71)(16,109,72)(17,110,64)(18,111,65)(28,132,122)(29,133,123)(30,134,124)(31,135,125)(32,127,126)(33,128,118)(34,129,119)(35,130,120)(36,131,121)(37,89,47)(38,90,48)(39,82,49)(40,83,50)(41,84,51)(42,85,52)(43,86,53)(44,87,54)(45,88,46)(55,146,136)(56,147,137)(57,148,138)(58,149,139)(59,150,140)(60,151,141)(61,152,142)(62,153,143)(63,145,144)(91,158,101)(92,159,102)(93,160,103)(94,161,104)(95,162,105)(96,154,106)(97,155,107)(98,156,108)(99,157,100), (1,14,43)(2,111,41)(3,72,45)(4,17,37)(5,114,44)(6,66,39)(7,11,40)(8,117,38)(9,69,42)(10,82,76)(12,54,27)(13,85,79)(15,48,21)(16,88,73)(18,51,24)(19,112,49)(20,67,50)(22,115,52)(23,70,53)(25,109,46)(26,64,47)(28,162,146)(29,160,140)(30,161,60)(31,156,149)(32,154,143)(33,155,63)(34,159,152)(35,157,137)(36,158,57)(55,122,95)(56,130,100)(58,125,98)(59,133,103)(61,119,92)(62,127,106)(65,84,81)(68,87,75)(71,90,78)(74,110,89)(77,113,83)(80,116,86)(91,138,121)(93,150,123)(94,141,124)(96,153,126)(97,144,118)(99,147,120)(101,148,131)(102,142,129)(104,151,134)(105,136,132)(107,145,128)(108,139,135), (2,8,5)(3,6,9)(10,69,109)(11,67,113)(12,65,117)(13,72,112)(14,70,116)(15,68,111)(16,66,115)(17,64,110)(18,71,114)(19,22,25)(21,27,24)(28,129,125)(29,127,120)(30,134,124)(31,132,119)(32,130,123)(33,128,118)(34,135,122)(35,133,126)(36,131,121)(37,89,47)(38,87,51)(39,85,46)(40,83,50)(41,90,54)(42,88,49)(43,86,53)(44,84,48)(45,82,52)(55,142,149)(56,140,153)(57,138,148)(58,136,152)(59,143,147)(60,141,151)(61,139,146)(62,137,150)(63,144,145)(73,76,79)(75,81,78)(92,98,95)(93,96,99)(100,103,106)(102,108,105)(154,157,160)(156,162,159), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162) );

G=PermutationGroup([[(1,94),(2,95),(3,96),(4,97),(5,98),(6,99),(7,91),(8,92),(9,93),(10,137),(11,138),(12,139),(13,140),(14,141),(15,142),(16,143),(17,144),(18,136),(19,100),(20,101),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,82),(36,83),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,111),(56,112),(57,113),(58,114),(59,115),(60,116),(61,117),(62,109),(63,110),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,4,7),(2,5,8),(3,6,9),(10,13,16),(11,14,17),(12,15,18),(19,22,25),(20,23,26),(21,24,27),(28,31,34),(29,32,35),(30,33,36),(37,40,43),(38,41,44),(39,42,45),(46,49,52),(47,50,53),(48,51,54),(55,58,61),(56,59,62),(57,60,63),(64,67,70),(65,68,71),(66,69,72),(73,76,79),(74,77,80),(75,78,81),(82,85,88),(83,86,89),(84,87,90),(91,94,97),(92,95,98),(93,96,99),(100,103,106),(101,104,107),(102,105,108),(109,112,115),(110,113,116),(111,114,117),(118,121,124),(119,122,125),(120,123,126),(127,130,133),(128,131,134),(129,132,135),(136,139,142),(137,140,143),(138,141,144),(145,148,151),(146,149,152),(147,150,153),(154,157,160),(155,158,161),(156,159,162)], [(1,80,23),(2,81,24),(3,73,25),(4,74,26),(5,75,27),(6,76,19),(7,77,20),(8,78,21),(9,79,22),(10,112,66),(11,113,67),(12,114,68),(13,115,69),(14,116,70),(15,117,71),(16,109,72),(17,110,64),(18,111,65),(28,132,122),(29,133,123),(30,134,124),(31,135,125),(32,127,126),(33,128,118),(34,129,119),(35,130,120),(36,131,121),(37,89,47),(38,90,48),(39,82,49),(40,83,50),(41,84,51),(42,85,52),(43,86,53),(44,87,54),(45,88,46),(55,146,136),(56,147,137),(57,148,138),(58,149,139),(59,150,140),(60,151,141),(61,152,142),(62,153,143),(63,145,144),(91,158,101),(92,159,102),(93,160,103),(94,161,104),(95,162,105),(96,154,106),(97,155,107),(98,156,108),(99,157,100)], [(1,14,43),(2,111,41),(3,72,45),(4,17,37),(5,114,44),(6,66,39),(7,11,40),(8,117,38),(9,69,42),(10,82,76),(12,54,27),(13,85,79),(15,48,21),(16,88,73),(18,51,24),(19,112,49),(20,67,50),(22,115,52),(23,70,53),(25,109,46),(26,64,47),(28,162,146),(29,160,140),(30,161,60),(31,156,149),(32,154,143),(33,155,63),(34,159,152),(35,157,137),(36,158,57),(55,122,95),(56,130,100),(58,125,98),(59,133,103),(61,119,92),(62,127,106),(65,84,81),(68,87,75),(71,90,78),(74,110,89),(77,113,83),(80,116,86),(91,138,121),(93,150,123),(94,141,124),(96,153,126),(97,144,118),(99,147,120),(101,148,131),(102,142,129),(104,151,134),(105,136,132),(107,145,128),(108,139,135)], [(2,8,5),(3,6,9),(10,69,109),(11,67,113),(12,65,117),(13,72,112),(14,70,116),(15,68,111),(16,66,115),(17,64,110),(18,71,114),(19,22,25),(21,27,24),(28,129,125),(29,127,120),(30,134,124),(31,132,119),(32,130,123),(33,128,118),(34,135,122),(35,133,126),(36,131,121),(37,89,47),(38,87,51),(39,85,46),(40,83,50),(41,90,54),(42,88,49),(43,86,53),(44,84,48),(45,82,52),(55,142,149),(56,140,153),(57,138,148),(58,136,152),(59,143,147),(60,141,151),(61,139,146),(62,137,150),(63,144,145),(73,76,79),(75,81,78),(92,98,95),(93,96,99),(100,103,106),(102,108,105),(154,157,160),(156,162,159)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)]])

70 conjugacy classes

class 1  2 3A···3H3I···3P6A···6H6I···6P9A···9R18A···18R
order123···33···36···66···69···918···18
size111···19···91···19···99···99···9

70 irreducible representations

dim11111111333333
type++
imageC1C2C3C3C3C6C6C6He3C2×He3C3≀C3He3.C3C2×C3≀C3C2×He3.C3
kernelC2×C33.C32C33.C32C2×C32⋊C9C6×He3C6×3- 1+2C32⋊C9C3×He3C3×3- 1+2C3×C6C32C6C6C3C3
# reps1122422422186186

Matrix representation of C2×C33.C32 in GL6(𝔽19)

1800000
0180000
0018000
000100
000010
000001
,
1100000
0110000
0011000
000700
000070
000007
,
700000
070000
007000
000700
000070
000007
,
010000
001000
100000
000010
000001
000100
,
100000
070000
0011000
000100
000070
0000011
,
001000
100000
0110000
0000170
0000017
0001600

G:=sub<GL(6,GF(19))| [18,0,0,0,0,0,0,18,0,0,0,0,0,0,18,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7,0,0,0,0,0,0,7],[0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1,0,0,0,0,0,0,7,0,0,0,0,0,0,11],[0,1,0,0,0,0,0,0,11,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,17,0,0,0,0,0,0,17,0] >;

C2×C33.C32 in GAP, Magma, Sage, TeX

C_2\times C_3^3.C_3^2
% in TeX

G:=Group("C2xC3^3.C3^2");
// GroupNames label

G:=SmallGroup(486,64);
// by ID

G=gap.SmallGroup(486,64);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-3,-3,331,224,873,735]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^3=e^3=1,f^3=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,e*d*e^-1=c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=b*d*e^-1,f*e*f^-1=b^-1*e>;
// generators/relations

׿
×
𝔽